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1. Phys. A Math. Gen. 27 (1994) L693-L696. Printed in the UK 

LETTER TO THE EDITOR 

Quadratic Poisson brackets compatible with an algebra 
structure 

A A Balinskyt and Yu M Burman# 
Lkpmment of Mathematics, Technion-Israel Institute of Technology, 32000 Haifa, lsrael 

Received 14 July 1994 

Abstrad Quadratic Poisson brackets on a vector space equipped with a bilinear multiplication 
are srudied. A notion of a bracket compatible with the multiplication is intmduced and an 
effective criterion of such compatibility is given. Among compatible brackets, a subclass of 
coboundary brackets is described, and such brackek are enumerated in a number of examples. 

Investigation of many specific physical systems leads to a problem of quantization of Poisson 
brackets on spaces equipped with additional shuctures. Quantum algebras, or q-deformed 
algebras, have been useful in the investigation of many physical problems. The most studied 
case is when this structure is a Lie group structure. This leads to a celebrated quantum 
groups theory (see [I]). As a matter of fact, the research in q-groups was indeed originated 
from physical problems. The interest in q-groups and q-deformed algebras arose almost 
simultaneously in statistical mechanics as well as in conformal field theories, in solid-state 
physics as well as in the study of topologically non-trivial solutions of nonlinear equations. 

As usual, Poisson bracket I., .) is understood as a Lie algebra structure on the space of 
smooth functions Cm(M) satisfying the Leibnitz identity (fg, h)  = f ( g ,  h )  t if, h ) g .  
If Jacobi identity is not required one speaks about pre-Poisson brackets. A mapping 
F : M I  -+ Mz of two manifolds equipped with Poisson brackets I., .}I and [., .)z, 
respectively, is called Poisson if 

If 0 F, g 0 F)I = If, 812 0 F.  

In other words, a canonical mapping F* : Cm(M2) + Cm(M1) is a Lie algebra 
homomorphism. 

Let M be a smooth manifold, and * be a multiplication, i.e. a mapping M x M -+ M. 
This immediately gives rise to a co-multiplication (diagonal) A : C ( M )  -+ C(M) 0 C(M) 
on the algebra C ( M )  of functions on M (with the pointwise multiplication). Namely, 

A ( f ) ( x ,  Y )  = f ( x  * Y )  

where C(M x M )  is identified with C ( M )  8 C ( M ) .  As it is well known, algebra C(M) is 
responsible for the topological structure of M while a diagonal A reflects a multiplication 
structure. 
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A Poisson bracket is said to be compatible with this multiplication of * : M x M + M 
is a Poisson mapping where M x M is equipped with a product Poisson bracket. In other 
words, the following identity should be satisfied: 

W f .  8) )  = I W ) ,  A(8)) 

I p @ q . r @ s j d ~ f t p . r t O q S + p r O t q , S } .  

(1) 
where 

In particular, a bracket on a vector space compatible with addition structure is exactly a 
Berezin-Lie bracket, i.e. a linear bracket (speaking about linear, quadratic, etc. we will 
always mean that a bracket of two linear functions is linear, quadratic, etc, respectively). 

The next-simplest case is quadratic Poisson brackets (see [Z]). Such a bracket may be 
compatible only with a bilinear operation on the vector space, i.e. with an algebra structure. 
One of the most important cases, that of a full matrix algebra Mat(n, K) where K = W or 
C, was investigated in detail in a series of works by Kupershmidt [3,4,5]. He also studied 
conditions under which a determinant (regarded as a function on Ma@, K)) is central. 

In this letter a general description of Poisson brackets compatible with a given algebra 
swucture is given. A case of quaternion algebra is given special consideration. All the 
compatible brackets are enumerated, and brackets for which a norm is central are explicitly 
described. 

Quantization of Poisson brackets compatible with algebra structures, as well as their 
connection with quantum group theory is the subject of a forthcoming paper. 

Consider a vector space A with a basis lei} ,  and let x i  be coordinate functions. A 
quadratic Poisson bracket is given by 

( x ' , x i }  = c p x ,  (2) 

a summation over repeated indices will always be assumed. Symbol c i  is skew-symmetric 
with respect to upper indices, but symmetry with respect to k and l is not generally assumed. 
Our task is to study brackets (2) compatible with the algebra structure in A given by the 
numerical smcture constants i.e. 

(3) 
With A being an algebra, a tensor square A 0 A can also be given an algebra structure 

by a component-wise multiplication. It is easy to see that the set of symmetric tensors 
Symm(A @ A) c A @ A is then a subalgebra, while the set of skew-symmetric tensors 
Skew(A 8 A) C A 0 A is a bimodule over Symm(A @ A). A linear mapping D : B + V 
from algebra B to a B-bimodule V is called a dijjierentiafion if it obeys the condition 

i ex . e( = aklei. 

D(P 9) = P W q )  + D(P)q (4) 
for all p ,  q E B.  

Example I .  Let r E V ,  and the algebra A is associative. Then the mapping 
D,(a) = ar - ra 

is a differentiation. 

the formula 
Constants ci{ from (2) also define an operator C : Symm(A @A) + Skew(A 8 A) by 

(5) 
Theorem I. The Poisson bracket (2) is compatible with the multiplication (3) if and only 
if the operator C given by (5) is a differentiation. 

c(ek 8 e, + el o ek) = ( c i  + c i )e i  @e , .  
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Proof. A co-multiplication A on the function algebra Cm(A) is given by 
k A(x’)  = O X  . 

The left-hand side of (1) equals cia$ai,,xexg 0 x f x ” ,  so the coefficient at the term 
xmxn @ xrxY is 

ci(a;,a:y + + a;,a!,, + a~,a:,) (6) 
provided m # n, t # y ,  with obvious simplifications if some indices are the same. 

coefficient at the term x m x n  @ x’xy is 
The right-hand side of (1) equals a ~ , a ~ . ( x ~ x ’  @ c ~ x w x z  + c ~ x u x ”  @ xqx“) ,  so the 

again, provided m # n ,  f # y .  Compatibility condition means coincidence of (6) and (7) 
for all i, j ,  m ,  n, t ,  and y .  

We now write differentiation identity (4) for the operator C given by (5) and p = 
e, @ e, + e, 0 e, and q = e, 0 e, + e, O e,. We suppose again that m # n, t # y ,  with 
the formulae being obviously simplified in case some equality holds. Then the coefficient 
at ek 8 el in the left-hand side of (4) equals 

(8) 
and in the right-hand side, 

(9) 
0 

Remark. All the above considerations do not make use of Jacobi identity, and therefore 
apply for general pre-Poisson brackets as well. 

Example 2. [6] Consider a Poisson bracket 

ci(ak,a!,y +ai.;, + u;,u!,~ + atya:,) 

(cz + c:h)(ajp!y + ajyai,) + (c: + c ~ ~ ) ( a ~ , a j s  + a,&a!,). 
Coincidence of (6) with (8), and of (7) with (9), is easily observed. 

. .  . .  
{ x ‘ ,  X I )  = X’X I  

A(x’) = x’  @ x i  

for i < j .  

It is compatible with the co-multiplication 

i.e. with the structure of the ‘first column algebra’ (algebra of n x n-matrices having non- 
zero elements only in the first column). The corresponding differentiation is, however not 
given by a commutator described in example 1. 

Hereafter all the algebras are assumed 
associative. Previously any quadratic pre-Poisson bracket compatible with the algebra A 
was identified with a differentiation C : Symm(A 8 A) + Skew(A @ A). We now restrict 
OUI considerations to the coboundary case, when this differentiation is internal, i.e. given 

(10) 
where r E A @ A. In some cases this, however, exhausts all the possible differentiations e.g. 
if A = Mat(n) is a full matrix algebra. For this algebra r is necessarily a skew-symmetric 
tensor. 

An important function on A = Mat(n) is a determinant det(M). Kupershmidt [5 ]  gives 
a necessary and sufficient condition on r E A @ A  for det(M) to be a central function. It is 

As a natural generalization of it, consider an algebra A and a function det(M), a 

We now consider coboundary brackets. 

by 
C(a) = ra - ar 

r!k = 0 for all j ,  k. ‘ I  

determinant in its left regular representation. 
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Theorem 2. Let r E A @ A~  be^ as in (IO), and r t ,  rz E A be its traces (in a regular 
representation) in the first and the second component, respectively. Then det is a central 
function, if and only if for all x E A the element y = x r ~  -rzx is a left annulator of A (i.e. 
yz = 0 for all z E A). 

The proof of theorem 2 simply copies Kupershmidt's computations in [ 5 ] .  
Consider coboundary pre-Poisson StrUctureS compatible with the algebra H of 

quaternions. A condition that a commutator (10) maps Symm(H @ H) into Skew(H @ H) 
gives that the element r can always be chosen skew-symmetric. Let 11 . 11 be a standard 
norm in H, and x I ,  , . . , x4 be coordinate functions with respect to a standard basis el = 1, 
e2 = i, e3 = j, e4 = k. 

Theorem 3. All the coboundary pre-Poisson brackets compatible with a multiplication in 
H such that 11 . 11 is a cenhal function are given by the following threeparameter family: 

(11) 

(12) 

(13) 

( X I ,  x 2 ]  = x2(bx3 + ax') - c((x3)' + (x4)*) 
( x ' ,  x 3 }  = x3(ax4 + c x 2 )  - b((x4)' + (x')') 

{ x  2 , x 3 -  1 - -*'(bx2 + cx3) 

(x3,x4] = - x ' ( n x 3  + bx') 

{x ' ,x4]  =x4(cx2 + bx3) -a((x2)* + (x3) ' )  

(14) 

(1.5) 

(x4,x2] = -x'(cx4 +ax2) .  (16) 

Moreover, all these brackets satisfy Jqcobi identity (i.e. are not merely pre-Poisson, but 
genuine Poisson brackets). 

Theorem 3 is proved by straightforward (however, cumbersome) computations. 
Since the norm is a central function  with respect to brackets ( I  I)-( 16), its level surfaces 

are Poisson submanifolds of H. A surface llxll = I is a group (inheriting its multiplication 
from H) isomorphic to SU(2). Thus, theorem 3 gives us a three-parameter family of 
Poisson brackets in SU(2) compatible with its Lie group structure, i.e., a three-parameter 
family of Poisson Lie groups. 

It would be very interesting to study similar questions for the algebra 0 of octaves. 
Kupershmidt [SI studies connections between pre-Poisson brackets on an algebra A and 
on the group Aut(A) of its automorphisms. The point is that the connected component of 
Aut(0) is isomorphic to the exceptional compact simple Lie group GZ which is currently a 
subject of intensive investigation. 

The authors are grateful to Professor B Kupershmidt for sending his preprints 
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